Bringing ideas to life.

Each year 5-10 finalists in the Open category of the Biomimicry Global Design Challenge are invited to participate in the Biomimicry Accelerator program.

Designed to help biomimetic solutions advance beyond the concept stage, the Biomimicry Accelerator is an intensive year-long program during which teams continue to develop their design concepts and market strategy utilizing business training, mentorship, and legal support provided by the Institute and its partners. At the end of each Accelerator, one team is awarded the $100,000 Ray of Hope Prize™, endowed by the Ray C. Anderson Foundation.

2016 $100,000 Ray of Hope Prize™ Winner - Team BioNurse

Quillota, Chile | $100,000 Ray of HopeGrand Prize Winner  
Camila Hernández, Camila Gratacos, Victor Vicencio, Jean François Casal, Carlo Sabaini, Eduardo Gratacos

BioNurse, a team from the Ceres Regional Center for Fruit and Vegetable Innovation in Quillota, Chile, won the Ray of Hope Prize for their BioPatch innovation. The Grand Prize was awarded at the Bioneers Conference in San Rafael, California, in October 2016. The BioPatch provides a way to help new seedlings grow while restoring degraded soils back to health. It returns vitality to the soil by improving conditions for seedlings and exposing them to a mix of nutrients, microbiology and hygroscopic components. The BioPatch is fabricated with natural fibers and biodegrades after one season. The plants growing from it will be capable of reproducing the same conditions in a natural way and, after two or three seasons, the soil will be productive again. For the BioPatch innovation, the team was inspired by the way that hardy “nurse” plants establish themselves in degraded soils and pave the way for new plant species to grow. With 25% of the world’s soils degraded, this innovation provides a way to grow and protect new plants and ensure that the soil can be regenerated to feed our growing population.

Meet the 2016 Accelerator Teams

The current Accelerator cohort was selected from submissions to the 2016 Food Systems Challenge. Learn more about the 2016-2017 Accelerator teams below, or review the winners and finalists from the 2015-2016 Accelerator, which also focused on Food Systems.

Bogotá, Colombia

Brescia, Italy

Evolution's Solutions 
La Jolla, California, U.S.A.

Calgary, Alberta, Canada

New York City, U.S.A.

Santiago, Chile



Bogotá, Colombia | Design concept First Prize winner
María José Leaño, Paula Esguerra, Laura Mancera, Brandon Sandoval

B-all is a sustainable, edible food packaging system, designed to protect food in the journey from producer to consumer. The team’s goal is to create a special coating, derived from kitchen produce, that can be easily applied to a spherical nutritious b-all, which will preserve it intact until it reaches the consumer. The b-all is designed to be integrated into a whole food system, using local, abundant ingredients and traditional recipes. Inspired by protective functions of beetles and certain fruits like the pittosporum undulatum, the b-all will have a special double peel coating, with a foam-like layer covered by an impermeable varnish-type layer. It can be used to fulfill local and immediate needs, supply nourishment to communities, and help in emergency situations. 



Brescia, Italy | Design concept Second Prize winner                                                
Ambra Venturini, Giuliana Gheza

Concept (non)Restaurant (CnR) is a meta-project that aims to shift attitudes about food waste and our disposable culture using natural models as inspiration. The team behind CnR created a (non)restaurant with limited local and seasonal resources to feed 10 people over 365 days. CnR shows that if you eat or buy more than you need, there will be no food or resources left for the (non)restaurant to “survive.” If sustainable choices are made however, the restaurant will stay alive, demonstrating that personal choices have an impact on the larger community. The team behind CnR looked to nature to discover how living organisms collaborate in order to share resources equally, getting inspiration from how mycorrhizal fungi help exchange carbon, nutrients, and water between plants, among others. They also learned how living organisms change their behavior in the face of a challenge, like how whales and monkeys transmit culture through emulation. The aim of CnR is to demonstrate the impact of individual actions within the system to inspire people to see food as energy - rather than an object – and to be more aware about the amount of food needed for the self and the community. 


Evolution's Solutions

La Jolla, California, U.S.A. | Design concept Third Prize winner
Cameron Ravanbach, Cliff Kapono, Jack Bernstein, Luca De Vivo

Inspired by microbial communities, specifically cyanobacteria, a team from UC San Diego have developed ANSA, a hydroponic growing system that effectively uses space, consumes less water, and eliminates the use of soil while maintaining nutrient quality and bringing healthy food closer to homes. Mimicking cyanobacteria’s “food”-producing photosynthetic inner membrane, the team designed a multi-compartmental growing space that uses solar powered LED lights as the primary energy source. The design extracts nutrients from compost through a series of filters where the nutrients are then used to feed the multi-layer, poly-culture hydroponic unit. By reducing the need for constant water input, synthetic fertilizers, and fossil fuel, ANSA will provide an economical, sustainable, and readily accessible way to provide healthy and organic food for populations with limited resources, including communities affected by natural disaster, political displacement, social disparities, and compromised living conditions.



Calgary, Alberta, Canada | Design concept First Prize Student winner 2015                                                
Jorge Zapote, Mitchell Weber, Xi Cheng, Michelle Zhou

Our design concept aims to take on the problem of food stores spoiling in areas with poor access to electricity. The goals of our alternate food preservation unit are to not require an electricity grid, to be significantly less expensive than a modern refrigeration methods and to be able to be incorporated into the regions of poverty where it is most needed. The cooling mechanism is inspired by temperature regulation approaches seen in mammals and insects and is a new way of approaching issues in the food system. Coral and termites inspired the first step, kangaroos, bees, and elephants the second, and lastly meerkats and burrowing animals and leaves the third. In our process an intake structure passively draws in warm ambient air and injects it via the venture effect into a pipe. The second step delivers the air into the evaporation chamber, where the pipe is immersed in a fluid. The fluid evaporating from around pipe cools the inside air and lastly the third step involves the cooled air entering the refrigeration chamber where food is stored. By emulating nature and creating conditions conducive to life we believe we have come up with a project can change the world of those who need it.



New York City, U.S.A.
Jacob Russo, Stephanie Newcomb, Alexa Nicolas, Anamarija Frankic, Dale Clifford

Nexloop makes it possible for city-dwellers to capture, store, and distribute rainwater for a hydroponic growing system, right from their own windows. By retrofitting multistory residential building facades to harness rainwater for irrigation, the Nexloop team aims to increase small-scale, hyper-local urban food production that operates independently from the city water grid, and increases the visibility of food system processes. The main system components are a horizontal module and vertical membrane that utilize superhydrophobic and superhydrophilic surfaces inspired by plants like the Sacred lotus and the Brazilian wild petunia, and capillary action inspired by ice plant bladder cells to channel water to indoor spaces. A system inspired by mycorrhizal fungi within the module passively delivers water to the organic roots of edible plants. The team’s ultimate vision is a food-water nexus capable of sustainable, closed-loop urban living. 



Santiago, Chile
Laura Cussen, Aníbal Fuentes Palacios, Carla Muttoni, Francisco Humeres, Jose Hernández, Paolma González Rojas, Agustina González Cid

Slant is an app that enables people to share information about quality food sources by mimicking the communication and interaction system of ants. In ant colonies, individual actions lead to better collective decisions about how the colony finds food, based on the quality, reliability, and availability of resources. Using this approach, Slant allows you to make decisions informed by the decisions of those around you. Similarly to how foraging ants leave pheromone trails, a user can leave a mark within a range of intensity depending of the quality of the food source and how sustainably it was produced. People can find food in all different places, from local mom-and-pop shops, to a plum tree down the block. This information is transformed in a very simple visualization, which is then assigned to that location, like a pheromone. These pheromones are added across the landscape to visualize higher and lower concentrations of marked areas and direct people to quality food sources. Slant aims to coordinate actions between users to make the entire consumption and distribution system more efficient, lowering food waste, and showcasing local food sources and products.

Meet the 2015 Accelerator Teams


Living Filtration System 
Oregon, USA








Mangrove Still 


Oasis Aquaponics 
Michigan, USA




Living Filtration System

Eugene, OR, USA | Prototype finalist; design concept First Prize winner 
Casey Howard, Matthew Jorgensen, Wade Hanson, Krisztian Megyeri, Alison Lewis

The earthworm’s digestive system and the human small intestine inspired this team from University of Oregon to develop a biomimetic drainage system that keeps nutrients in the soil rather than leaving the field in runoff. After farmers apply fertilizer, nutrients often enter the surrounding water system through surface runoff or by leaching through the soil into the ground water. This process leads to nutrient accumulation in nearby lakes and streams which then concentrates in rivers like the Mississippi, and is deposited in the Gulf of Mexico and other estuaries. The Living Filtration System is an alternative drainage tiling system that was designed to serve as a catalyst for changing current farming techniques. The team’s design captures nitrogen, phosphorous, and other nutrients at the source of application in farm fields, using an overlapping series of four tubes. The first layer is a wood-plastic composite that mimics the curves of the human small intestine to slow water flow, and the second, carbon-based, layer uses farm waste like corn husks and wood debris to filter out nutrients from runoff, just like the way earthworms filter nutrients from the soil. The next two layers capture nutrients and enable beneficial relationships to develop between soil microbes and plant roots. By keeping the nutrients from leaching out of the soil, the LFS system not only cleans the water leaving the fields, but also decreases the amount of fertilizer needed and improves soil health over time.



Bankok, Thailand | Prototype third prize winner; design concept second prize winner                                                
Pat Pataranutaporn, Ratchaphak Tantisanghirun, Purichaya Kuptajit, Tavita Kulsupakarn, Alfredo Raphael

Edible insects may be one of the answers to our global food crisis. They are high in protein and rich in essential micronutrients, such as iron and zinc. They also don’t need as much space as livestock, emit lower levels of greenhouse gases, and have an extremely high feed conversion rate. The BioX team from Thailand developed Jube, a bio-inspired chamber for capturing edible insects, the food of the future. After studying a range of carnivorous plants, the team decided to base their design on the Genlisea violacea “lobster-pot trap.” This is a Y-shaped modified leaf chamber that is easy to enter, but not to exit due to its inward-pointing hair, which force the prey to move in a particular direction. To use Jube, the user puts insect food into the bottom part of the device to lure the insects. Once the insects follow the odor and step into Jube, they can’t turn back. This device promotes a more sustainable way to incorporate protein and nutrients into the world’s diet by offering an insect-capturing device that is unique and beautifully crafted.



Quillota, Chile | Prototype Ray of Hope Grand Prize winner; design concept third prize winner 
Camila Hernández, Camila Gratacos, Nicolas Orellana, Victor Vicencio, Jean François Casal, Carlo Sabaini, Eduardo Gratacos

A team from the Ceres Regional Center for Fruit and Vegetable Innovation in Chile has created a new way to not only help new seedlings grow, but restore degraded soils back to health. The BioNurse returns vitality to the soil by improving conditions for seedlings and exposing them to a mix of nutrients, microbiology and hygroscopic components. It is fabricated with natural fibers and biodegrades after one season. The plants growing from it will be capable of reproducing the same conditions in a natural way and, after two or three seasons, the soil will be productive again. For the BioNurse, the team was inspired by the way that hardy “nurse” plants establish themselves in degraded soils and pave the way for new plant species to grow. With 25% of the world’s soils degraded, this innovation provides a way to grow and protect new plants and ensure that the soil can be regenerated to feed our growing population.


BIOcultivator (formerly Balcony Cultivator)

Zvolen, Slovakia | Prototype finalist; design concept People’s Choice Award winner 
Zuzana Tončíková, Miroslav Chovan, David Jurik, Frantisek Toth, David Lopusek

A team from Zvolen, Slovakia, devised a self-sustaining system to help city-dwellers grow their own organic food, right on their balconies. In many Central European cities, organic food is expensive and hard to find and most residents don’t have access to yards or gardens to grow their own produce. Team B4D (Biomimicry for Design) developed the BIOCultivator (formerly the Balcony Cultivator) to enable anyone to grow healthy food, without being a gardening expert. TheBIOCultivator design was inspired by the ability of some lizard species living in arid areas to collect water and moisture with their skin. TheBIOCultivator draws moisture from a composting feature at the bottom of the device, where it develops into condensation in the top “cupola” of the design. The water then is directed to the plants’ roots via channels (or microstructures) on the inside of the cupola that are designed to mimic a lizard’s scales. Not only does this device provide a way to grow food for those without access to green space, but it offers an alternative growing solution for drought-prone areas.


Mangrove Still

Brescia, Italy | Prototype finalist 
Alessandro Bianciardi, Alessandro Zecca, Alessandro Villa, Giulia Villa, Edoardo Pini, Tiziana Tomasello

This Italian team looked to mangroves and salt marshes for inspiration to address land degradation and water scarcity in coastal areas. Their design is a desalinating solar still that is optimized to produce fresh water for irrigation and costs five times less than traditional solar stills. The team’s goal was to develop a more sustainable, lower-cost way to produce fresh water in arid/semi-arid coastal areas, since current technologies for desalinating seawater are expensive, especially to generate enough water to irrigate coastal farmlands. To inform their design, the team looked at mangroves and salt marshes to learn about how these pioneering species establish themselves in coastal areas, then pave the way for other species to appear. They envision that a network of Mangrove Stills installed in a degraded, arid area could produce enough water revitalize the land and kick off a self-perpetuating microclimate. The Mangrove Still’s design optimizes light capture, surface to volume ratio, and thermoregulation to create a lower-cost and efficient method of desalinating seawater, built with recyclable, reusable materials. The still can be assembled quickly and utilized for emergency response to provide drinking water or treating polluted water.


Oasis Aquaponic Food Production System

Ann Arbor, Michigan | Prototype second prize winner 
Michelle Leach, Jacquelyn Smith Hernandez Ortiz

This team, based in Michigan and Central America, has created a small aquaponics system that is designed for radical affordability. The Oasis Aquaponic Food Production System helps subsistence farmers grow better food sustainably (using less space, less water, and no chemicals), improve nutrition, and generate income. Aquaponics is the co-culture of fish and vegetables in a recirculating biofilter-based system. Fish waste feeds the plants and the plants clean the water for the fish. This symbiotic relationship allows more food to be grown in a smaller area and with less water than traditional aquaculture or horticulture can support. The design team previously prototyped two aquaponic systems for use in rural Central America, but wanted to find a way to dramatically reduce the cost. Applying lessons from nature, they refined their design to reduce structural mass and materials by employing an inflatable ring, The Oasis Aquaponic Food Production System is a solar-powered aquaponics system capable of producing at minimum 200 pounds of Tilapia and 200 pounds of tomatoes or other vegetables annually. With a projected retail price of $100, and a business model that provides low-interest purchasing credit, the system is radically affordable and accessible.



Milan, Italy | Prototype finalist 
Felipe Hernández, Germán Hernández, Luca Rossettini, Jorge Armando Céspedes Camacho, Patricia Villa-Roel

Team Hexagro from Italy has created a “groundless” growing system that gives people the opportunity to grow healthy food on a small footprint. Hydroponic systems often use synthetic materials and tend to work as closed systems. In comparison, Hexagro is made of recyclable, biodegradable materials and has a unique, hexagonal shape that was inspired by geometric patterns found in nature. Hexagro is modular and can adapt easily to a range of urban spaces. Four times more efficient than traditional farming techniques, Hexagro’s modular tree can produce a total of 342 lettuce plants per 2 square meters in comparison to traditional ground farming, which can produce 80 lettuce plants per 2 square meters. Its automatic irrigation system provides programmed cycles that adapt to the time of the day and season, preventing plants from drying or being overfed by nutrients. A digital application will be developed in order to connect the system to smartphones.